STRATIFIED FLOW PAST A HILL: APPLICATION OF THE DIVIDING STREAMLINE CONCEPT

By

M. Thompson, K. McEnerney, H.J.S. Fernando and S. Di Sabatino

University of Notre Dame Notre Dame, IN

Dividing Streamline Concept (DSLC)

Based on energy arguments:

Sheppard (1956)

"Under what conditions will an airstream rise over a mountain range?"

Sheppard's Equation:

$$
\begin{equation*}
\frac{1}{2} \rho\left(U_{0}\left(H_{s}\right)\right)^{2}=g \int_{H_{s}}^{h}(h-z)\left(-\frac{\partial \rho}{\partial z}\right) d z \tag{1}
\end{equation*}
$$

A conceptualization of source pollution within a stably stratified flow collapsing into a thin layer, and becoming entrained in the flow.

Dividing Streamline Concept (DSLC)

$$
\frac{1}{2} \rho\left(U_{0}\left(H_{s}\right)\right)^{2}=g \int_{H_{s}}^{h}(h-z)\left(-\frac{\partial \rho}{\partial z}\right) d z
$$

This generally requires iterative solving...
Sheppard's formula can be simplified assuming:

1. Constant density gradient β
2. Uniform approach velocity profile, U_{∞}

$$
\frac{1}{2} \rho\left(U_{\infty}\right)^{2}=g \int_{H_{s}}^{h}(h-z)(-\beta) d z
$$

Sheppard's Formula

$$
\frac{H_{s}}{h}=1-\gamma F r \quad \quad F r=\frac{U_{\infty}}{N_{\infty} h}<1
$$

Assuming total energy transfer, $\gamma=1$
Lends itself to laboratory experiments, ex. Stratified towing tank

DSLC: Experiments

Sinusoidal Mountain Study

(a)

Figure : Simple sinusoidal 3-D ridge in a stratified tow tank, adopted from Hunt et al. (1980); Snyder et al., (1985).

Cinder Cone Butte, ID

Figure : Field and laboratory experiments conducted on Cinder Cone Butte, ID; focused on dividing streamline concept.

Theoretical extensions: Log Vel. Profile

Remember assumptions:

1. Constant density gradient β
2. Velocity profile:

$$
u(z)=\frac{u_{*}}{\kappa} \ln \left(\frac{z}{z_{0}}\right)
$$

Theoretical extensions: Log Vel. Prof

Taking the exponential of each side:

$$
\frac{H_{S}}{z_{0}} e^{\frac{N \kappa}{u_{*}} H_{S}}=e^{\frac{N \kappa}{u_{*}} h}
$$

$$
H_{s} \frac{N \kappa}{u_{*}}=W\left(e^{\left(\frac{N \kappa}{u_{*}} h\right)}\left(\frac{N \kappa}{u_{*}} z_{0}\right)\right)
$$

$$
H_{s}=\frac{u_{*}}{N \kappa} W\left(e^{\left(\frac{N \kappa}{u_{*}} h\right)}\left(\frac{N \kappa}{u_{*}} z_{0}\right)\right)
$$

Theoretical extensions: Log Vel. Prof

buoyancy lengthscale

$$
L_{b}=\frac{u_{*}}{N \kappa}
$$

$$
\frac{H_{s}}{L_{b}}=W\left(\frac{h}{L_{b}} \frac{z_{0}}{h} e^{\sqrt{\frac{h}{L_{b}}}}\right)
$$

$$
\frac{H_{S}}{h}=1-\gamma \operatorname{Fr}(\text { Sheppards Formula })
$$

Experimental Site

Figure 17: (Left) High resolution 10m orthoimagery of Granite Mountain, portraying the location of the instrumentation tower and smoke visualization site. (Right) Ten times magnification of the smoke visualization site; the contours are presented at $5 m$ intervals (DEM data obtained from USGS, 2013).

32m NW tower:

- 581000 R.M. Young ultrasonic sonic anemometers $(20 \mathrm{~Hz})$ and Campbell Scientific HMP 45 Temperature probes (1Hz)

PWIDs:

- 05103 R.M. Young mechanical wind sensors
- HMP45 probes

Hill of Interest

Note that camera view is North-Northwest.

$\hat{\mathcal{H}}=$ The location of a simultaneous smoke canister release.

sodar

Radiometer profiles

Sodar Profiles

Attempted Smoke Releases

Table 1: Smoke release trials, resulting in a control case (purple), and stratified case (green).

Date	Start Time	Smoke Method	Quantity	Location	Weather Conditions	
					Cover	Onsite WD
5/20/2013	6:30 PM	Smoke Generator	3 gallons mineral oil	NW Slope	Clear	N/NE
5/22/2013	1:54 PM	Smoke pot (white)	1 pots	NW Slope	Overcast	N
5/23/2013	6:04 AM	Red Smoke Grenade	3 grenades	NW Slope	Clear	N/NE
5/23/2013	7:00 AM	Smoke pot (white), Crane	3 pots	NW Slope	Clear	N/NE
5/23/2013	8:00 PM	Smoke Generator	2 gallons mineral oil	N Slope	Clear	N/NE
5/24/2013	7:00 AM	Ag Spray	A few minutes running	NE Slope	Clear	S/SW
5/28/2013	8:00 AM	AG Spray	15 minutes running	NE Slope	Partly Cloudy	N/NE
5/28/2013	8:08 AM	Red Smoke Grenade	2 grenades	NE Slope	Partly Cloudy	N/NE
5/30/2013	6:00 AM	AG Spray	A few minutes running	NE Slope	Clear	N/NE
5/30/2013	6:15 AM	Red Smoke Grenade	4 grenades	NE Slope	Clear	N/NE
5/30/2013	6:30 AM	Smoke pot (white), Crane	3 pots	NE Slope	Clear	N/NE

Smoke Release Analysis \#1

May 30 ${ }^{\text {th }}, 2013$ - Stratified Flow

Red Smoke Canisters (06:15 MDT):

- 4 simultaneous ground releases at approximately $0 h, 0.08 h, 0.42 h$ and $0.92 h$
- Neutrally buoyant, burning duration of approximately two mınutes
- \quad Saddle point $=$ hill top $($ Snyder et al., 1980 $)$

White Smoke Canisters (06:20 MDT):

- 3 simultaneous ground releases at approximately $0.08 h, 0.42 h$ and $0.92 h$
- 1 elevated release 0.37 h above the ground, upstream
- Neutrally buoyant, burning đuration of approximately five minutes
- \quad Saddle point $=$ hill top $($ Snyder et al., 1980 $)$

May 30 ${ }^{\text {th }}$ (Stratified): Measured Profiles

Normalized velocity profiles w / u,

May 30 ${ }^{\text {th }}$ (Stratified): Visualization

Movie 1: Red smoke release.

Figure 25: Red smoke release during May $30^{\text {th }}$, 2013. The still photos are taken at approximately $30,70,80$, and 120 seconds after the release of the smoke canisters. The dashed green line is a visual guide to approximate .

May 30 ${ }^{\text {th }}$ (Stratified): Visualization

$t=220 \mathrm{~s}$

$t=300 \mathrm{~s}$

Figure 26: White smoke release during May 30, 2013. The still photos are taken at approximately 40,220 , and 300 seconds after the release of the smoke canisters. The vantage point of the last photograph is portrayed in the photograph before it. The streamlines and velocity profile in the final photograph is for illustration only.

Conclusions

1. Application of \log velocity profile to Sheppard's formula \rightarrow explicit solution for H_{s}, which utilizes the Lambert-W function
2. This new representation is based on a buoyancy length scale, L_{b} (previously used Fr scaling)
3. Field observations support the derived expression

May $30^{\text {th }}$ (Stratified): Movie

Thank you

